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9 Introduction to Di�erential Equations

• Di�erential equations crop in every area of anything that can be described mathematically. In every branch
of science, from physics to chemistry to biology, as well as other �elds such as engineering, economics, and
demography, virtually any interesting kind of process is modeled by a di�erential equation or a system of
di�erential equations.

• Morally, the reason for this is that most anything interesting involves change of some kind, and thus rates of
change � in the guise of a growth rate for a population, or the velocity and acceleration of a physical object,
or the di�usion rates of molecules involved in a reaction, or rates of quantities in economic processes.

• In general, a di�erential equation is merely an equation involving a derivative (or several derivatives) of a
function or functions.

◦ Examples: y′ + y = 0, or y′′ + 2y′ + y = 3x2, or f ′′ · f = (f ′)2, or f ′ + g′ = x3.

◦ �Most� di�erential equations are di�cult if not impossible to �nd exact solutions to, in the same way
that �most� random integrals or in�nite series are hard to evaluate exactly.

◦ In this course we will only cover how to solve a few basic types of equations: (�rst-order) separable
equations, �rst-order linear equations, and second-order linear equations with constant coe�cients.

• Sometimes we will be looking for every function which satis�es some particular equation: e.g., for all functions
such that y′ + y = 0. Other times we will be looking for a particular function, subject to some additional
conditions � e.g., a function y such that y′ + y = 0 and y(0) = 10. We will discuss both types of problems.

9.1 Terminology

• If a di�erential equation involves functions of only a single variable (i.e., if y is a function only of x) then it
is called an ordinary di�erential equation (or ODE).

◦ We will only talk about ODEs in this course, since we don't know how to di�erentiate functions of more
than one variable.

◦ For completeness, di�erential equations involving functions of several variables are called partial di�erential equations,
or PDEs. (Derivatives of functions of more than one variable are called partial derivatives, hence the
name.)
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• The standard form of a di�erential equation is when it is written with all terms involving y or higher derivatives
on one side, and functions of the variable on the other side.

◦ Example: The equation y′′ + y′ + y = 0 is in standard form.

◦ Example: The equation y′ = 3x2 − xy is not in standard form.

• An equation is homogeneous if, when it is put into standard form, the x-side is zero. An equation is
nonhomogeneous otherwise.

◦ Example: The equation y′′ + y′ + y = 0 is homogeneous.

◦ Example: The equation y′ + xy = 3x2 is nonhomogeneous.

• An nth order di�erential equation is an equation in which the highest derivative is the nth derivative.

◦ Example: The equations y′ + xy = 3x2 and y′ · y = 2 are �rst-order.

◦ Example: The equation y′′ + y′ + y = 0 is second-order.

• A di�erential equation is linear if it is linear in the y terms. In other words, if there are no terms like y2, or
(y′)3, or y · y′.

◦ Example: The equations y′ + xy = 3x2 and y′′ + y′ + y = 0 are linear.

◦ Example: The equation y′ · y = 3x2 is not linear.

• We say a linear di�erential equation has constant coe�cients if the coe�cients of y, y′, y′′, ... are all constants.

◦ Example: The equation y′′ + y′ + y = 0 has constant coe�cients.

◦ Example: The equation y′ + xy = 3x2 does not have constant coe�cients.

• Theorem: If y0 and y1 both satisfy the same linear homogeneous di�erential equation (of any order), then
C0 · y0 + C1 · y1 will also satisfy the equation, for any constants C0 and C1.

◦ This is just a formal check. For example, if the di�erential equation is y′′+ y = 0, then [C0y0 +C1y1]
′′+

[C0y0 + C1y1] = C0[y
′′
0 + y0] + C1[y

′′
1 + y1] = C0[0] + C1[0] = 0.

9.2 Some Motivating Applications

• Simple motivating example: A population (unrestricted by space or resources) tends to grow at a rate propor-
tional to its size. [Reason: imagine each male pairing o� with a female and having a �xed number of o�spring
each year.]

◦ In symbols, this means that
dP

dt
= k ·P , where P (t) is the population at time t and k is the growth rate.

This is a homogeneous �rst-order linear di�erential equation with constant coe�cients.

◦ It's not hard to see that one population model that works is P (t) = ek·t � hence, �exponential growth�.

• More complicated example: The Happy Sunshine Valley is home to Cute Mice and Adorable Kittens. The
Cute Mice grow at a rate proportional to their population, minus the number of Mice that are eaten by their
predators, the Kittens. The population of Adorable Kittens grows proportional to the number of mice (since
they have to catch Mice to survive and reproduce).

◦ In symbols this means
dM

dt
= k1 ·M−k2 ·K, and

dK

dt
= k3 ·M , whereM(t) and K(t) are the populations

of Mice and Kittens, and k1, k2, k3 are some constants.

◦ Now it's a lot harder to see what a solution to this system could be. (We won't explicitly learn how to
solve a system like this, but it can be converted to a single second-order linear equation, which can then
be solved using the methods of this course.)
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◦ The conditions here are not particularly unnatural for a simple predator-prey system. But in general,
there could be non-linear terms too � perhaps when two Kittens meet, they �ght with each other and

cause injury, which might change the equation to
dK

dt
= k3 ·M − k4 ·K2.

◦ Now imagine trying to model even a 'small' ecosystem with 5 species, each of which interacts with all of
the others.

• Higher-order example: A simple pendulum consists of a weight suspended on a string, with gravity the only
force acting on the weight. If θ is the angle the pendulum's string makes with a vertical line, then horizontal
force on the weight toward the vertical is proportional to sin(θ).

◦ In symbols, this means that
d2θ

dt2
= −k · sin(θ). This is a non-linear second-order di�erential equation.

◦ This equation cannot be solved exactly for the function θ(t). However, a reasonably good approximation
can be found by using sin(θ) ≈ θ.

9.3 First-Order: Existence-Uniqueness Theorem

• Before we discuss how to solve various classes of �rst-order di�erential equations, we would like to know when
(in general) we can say that a �rst-order di�erential solution has an equation, and when we can say that
solution is unique.

• Theorem (Existence-Uniqueness): The initial value problem y′ = f(x, y) with y(a) = b has at least one
solution (on some interval containing a) if the function f is continuous on a rectangle containing (a, b). The

IVP has exactly one solution (on some interval containing a) if the partial derivative
∂f

∂y
is continuous on a

rectangle containing (a, b).

◦ Note: The partial derivative
∂f

∂y
is obtained by treating x as a constant in the de�nition of f , and

di�erentiating with respect to y. If f(x, y) = x3y2 + exy, for example, then
∂f

∂y
= 2x3y + x exy.

◦ The proof of the theorem is fairly di�cult. The general idea of one proof of the theorem is to construct
a sequence of functions (de�ned on some small interval around a), such that taking the limit of the
sequence yields a solution to the di�erential equation.

◦ The continuity of f ensures that the sequence will converge; one way of doing this is to use the continuity
of f to show that the functions far out in the sequence eventually become very close together.

◦ The continuity of the partial derivative
∂f

∂y
ensures that the solution function is unique; one way of doing

this is to use the continuity of
∂f

∂y
to show that the integral of the absolute value of the di�erences of

two solutions is zero on an interval containing a.

• Example: Determine the initial conditions y(a) = b for which the di�erential equation y′ = ey + xy is
guaranteed to have a solution, and where it is guaranteed to have a unique solution.

◦ All initial conditions lead to a solution, because f(x, y) = ey + xy is continuous everywhere.

◦ In fact, all initial conditions lead to a unique solution , because the partial derivative fy(x, y) = ey + x

is also continuous everywhere.

◦ It is, in fact, not possible to solve this equation explicitly using any of the techniques we will learn.
Nonetheless, the theorem guarantees that it has a unique solution!

• Example: Determine the initial conditions y(a) = b for which the di�erential equation y′ = y2/3 is guaranteed
to have a solution, and where it is guaranteed to have a unique solution.

◦ All initial conditions lead to a solution , because since f(x, y) = y2/3 is continuous everywhere.
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◦ However, the partial derivative fy =
2

3
y−1/3 is not continuous near y = 0, and so the solution is

not guaranteed to be unique around (a, 0) for any a, but unique otherwise .

◦ In fact, we can even write down two di�erent solutions to the IVP y′ = y1/3 with y(0) = 0: namely, the

constant function y = 0 and the function y =
1

27
x3. (They both satisfy the equation and take the value

zero at x = 0, but are not the same function.)

• Example: Determine the initial conditions y(a) = b for which the di�erential equation y′ =
√
y − x is guar-

anteed to have a (real-valued) solution, and where it is guaranteed to have a unique solution.

◦ In order to have a solution, we need f(x, y) =
√
y − x to be continuous in a rectangle containing (a, b).

The function will not give real-number values if x > y, and it is not continuous near any point with
x = y either, because any rectangle around a point (a, a) will capture some points with x > y.

◦ Thus, the solution is guaranteed to exist only for (a, b) with b > a .

◦ The partial derivative fy(x, y) =
1

2
√
y − x

is not de�ned if x ≥ y (since in addition to taking the square

root of a negative number, we cannot divide by zero). So the solution is unique for (a, b) with b > a .

◦ Note: If we decide to allow complex numbers, then the function f(x, y) =
√
y − x is de�ned and contin-

uous on the entire plane (although it will take non-real values if x > y). So with this convention, the

solution is guaranteed to exist for all (a, b) because the function is now continuous everywhere. The

derivative is discontinuous at points of the form (a, a) because dividing by zero is still not allowed, so

the solution is guaranteed to be unique for all (a, b) with a 6= b .

9.4 First-Order: Separable

• One type of �rst-order equations we can solve explicitly is the class of separable equations. Before giving the
formal de�nition, we will give an example.

• Example: Solve the initial value problem y′ = 2xy with y(1) = 1.

◦ We rearrange the equation as
y′

y
= 2x, and then integrate both sides.

◦ This gives
´ y′
y
dx =

´
x dx = x2 + C1.

◦ In the left integral we can make the substitution u = y(x), with u′ = y′ dx, to obtain ln(y)+C2 = x2+C1.

◦ Moving the constants around gives ln(y) = x2 + C for some constant C.

◦ Plugging in the condition y(1) = 1 gives 0 = 12 + C, so C = −1.

◦ Thus, ln(y) = x2 − 1 , so that y = ex
2−1 .

◦ Remark: We can simplify the procedure slightly if instead we convert the statement
dy

dx
= 2xy into the

statement
dy

y
= 2x dx. We can then integrate both sides directly, to obtain the statement ln(y) = x2+C.

• De�nition: A separable equation is of the form y′ = f(x) · g(y) for some functions f(x) and g(y), or an
equation equivalent to something of this form.

◦ We can rearrange such an equation and then integrate both sides, in the same way as in the example
above. We can simply the solving procedure slightly, as noted above: instead of making a substitution,
we can use di�erentials.

• Here is the method for solving such equations:
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◦ Step 1: Replace y′ with
dy

dx
, and then write the equation as

dy

g(y)
= f(x) dx.

◦ Step 2: Integrate both sides (inde�nitely), and place the +C on the x side.

◦ Step 3: If given, plug in the initial condition to solve for the constant C. (Otherwise, just leave it where
it is.)

◦ Step 4: Solve for y as a function of x, if possible.

• Example: Solve y′ = k · y, where k is a constant.

◦ Step 1: Rewrite as
dy

y
= k dx.

◦ Step 2: Integrate to get
´ dy
y

=
´
k dx, which gives ln(y) = kx+ C.

◦ Step 4: Exponentiate to get y = ekx+C = C · ekx .

• Example: Solve the di�erential equation y′ = ex−y.

◦ Step 1: Using the identity ex−y = ex/ey, we can rewrite the equation as ey dy = ex dx.

◦ Step 2: Integrate to get
´
ey dy =

´
ex dx, which gives ey = ex + C.

◦ Step 4: Take the natural logarithm to get y = ln(ex + C) .

• Example: Find y given that y′ = x+ xy2 and y(0) = 1.

◦ Step 1: Rewrite as
dy

1 + y2
= x dx.

◦ Step 2: Integrate to get
´ dy

1 + y2
=
´
x dx, which gives tan−1(y) =

1

2
x2 + C.

◦ Step 3: Plug in the initial condition to get tan−1(1) = C, so that C = π/4.

◦ Step 4: Taking the natural logarithm gives y = tan

(
1

2
x2 +

π

4

)
.

9.5 First-Order: Linear

• Another type of �rst-order equations we can solve explicitly is the class of �rst-order linear equations, which
(upon dividing by the coe�cient of y′) can be written in the general form y′ + P (x) · y = Q(x), where P (x)
and Q(x) are some functions of x.

• It would be very convenient if we could just integrate both sides to solve the equation. However, in general,
we cannot: the y′ term is no di�culty, but the P (x) · y term causes trouble.

• To �x this issue, we use an �integrating factor�: we multiply by a function I(x) which will turn the left-hand
side into the derivative of a single function.

◦ What we would like to happen is for I(x) · y′ + I(x)P (x) · y to be the derivative of something nice.

◦ When written this way, this sum looks sort of like the output of the product rule. If we can �nd I(x) so

that the derivative of I(x) is I(x)P (x), then this sum will be the derivative
d

dx
[I(x) · y].

◦ What we want is I(x)P (x) = I ′(x). This is now a separable equation for the function I(x), and we can
see by inspection that one solution is I(x) = e

´
P (x) dx.

• Motivated by the above logic, here is the method for solving �rst-order linear equations:

◦ Step 1: Put the equation into the form y′ + P (x) · y = Q(x).
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◦ Step 2: Multiply both sides by the integrating factor e
´
P (x) dx to get e

´
P (x) dxy′ + e

´
P (x) dxP (x) · y =

e
´
P (x) dxQ(x).

◦ Step 3: Observe that the left-hand side is
d

dx

[
e
´
P (x) dx · y

]
, and take the antiderivative on both sides.

(Don't forget the constant of integration C.)

◦ Step 4: If given, plug in the initial condition to solve for the constant C. (Otherwise, just leave it where
it is.)

◦ Step 5: Solve for y as a function of x.

• Example: Find y given that y′ + 2xy = x and y(0) = 1.

◦ Step 1: We have P (x) = 2x and Q(x) = x.

◦ Step 2: Multiply both sides by e
´
P (x) dx = ex

2

to get ex
2

y′ + ex
2 · 2x · y = x · ex2

.

◦ Step 3: Taking the antiderivative on both sides yields ex
2

y =
1

2
ex

2

+ C.

◦ Step 4: Plugging in yields e0 · 1 =
1

2
e0 + C hence C =

1

2
.

◦ Step 5: Solving for y gives y =
1

2
+

1

2
e−x

2

.

• Example: Find all functions y for which xy′ = x4 − 4y.

◦ Step 1: We have y′ +
4

x
y = x3, so P (x) =

4

x
and Q(x) = x3.

◦ Step 2: Multiply both sides by e
´
P (x) dx = e4 ln(x) = x4 to get x4y′ + 4x3y = x7,

◦ Step 3: Taking the antiderivative on both sides yields x4y =
1

8
x8 + C.

◦ Step 5: Solving for y gives y =
1

8
x4 + C · x−4 .

• Example: Find y given that y′ · cot(x) = y + 2 cos(x) and y(0) = −1

2
.

◦ Step 1: We have y′ − y tan(x) = 2 sin(x), with P (x) = − tan(x) and Q(x) = 2 sin(x).

◦ Step 2: Multiply both sides by e
´
P (x) dx = eln(cos(x)) = cos(x) to get y′ ·cos(x)−y ·sin(x) = 2 sin(x) cos(x).

◦ Step 3: Taking the antiderivative on both sides yields [y · cos(x)] = −1

2
cos(2x) + C.

◦ Step 4: Plugging in yields −1

2
= −1

2
· 1 + C hence C = 0.

◦ Step 5: Solving for y gives y = − cos(2x)

2 cos(x)
.

9.6 First-Order: Autonomous Equations, Equilibria, and Stability

• An autonomous equation is a �rst-order equation of the form
dy

dt
= f(y) for some function f .

◦ An equation of this form is separable, and thus solvable in theory.

◦ However, sometimes the function f(y) is su�ciently complicated that we cannot actually solve the
equation explicitly.

◦ Nonetheless, would like to be able to say something about what the solutions look like, without actually
solving the equation. Happily, this is possible.
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• An equilibrium solution, also called a steady state solution or a critical point, is a solution of the form y(t) = c,
for some constant c. (In other words, it is just a constant-valued solution.)

◦ Clearly, if y(t) is constant, then y′(t) is zero everywhere. Thus, in order to �nd the equilibrium solutions
to an autonomous equation y′ = f(y), we just need to solve f(y) = 0. (And this is not generally so
hard.)

• For equilibrium solutions, we have some notions of �stability�:

◦ An equilibrium solution y = c is stable from above if, when we solve y′ = f(y) with the initial condition
y(0) = c+ε for some small but positive ε, the solution y(t) moves toward c as t increases. This statement
is equivalent to f(c+ ε) < 0.

◦ A solution y = c is stable from below if when we solve y′ = f(y) with the initial condition y(0) = c−ε for
some small but positive ε, the solution y(t) moves toward c as t increases. This statement is equivalent
to f(c− ε) > 0.

◦ A solution y = c is unstable from above if when we solve y′ = f(y) with the initial condition y(0) = c+ ε
for some small but positive ε, the solution y(t) moves away from c as t increases. This statement is
equivalent to f(c+ ε) > 0.

◦ A solution y = c is unstable from below if when we solve y′ = f(y) with the initial condition y(0) = c− ε
for some small but positive ε, the solution y(t) moves away from c as t increases. This statement is
equivalent to f(c− ε) < 0.

• We say a solution is stable if it is stable from above and from below. We say it is unstable if it unstable
from above and from below. Otherwise (if it is stable from one side and unstable from the other) we say it is
semistable.

• From the equivalent conditions about the sign of f , here are the steps to follow to �nd and classify the
equilibrium states of y′ = f(y):

◦ Step 1: Find all values of c for which f(c) = 0, to �nd the equilibrium states.

◦ Step 2: Mark all the equilibrium values on a number line, and then in each interval between two critical
points, plug in a test value to f to determine whether f is positive or negative on that interval.

◦ Step 3: On each interval where f is positive, draw right-arrows, and on each interval where f is negative,
draw left-arrows.

◦ Step 4: Using the arrows, classify each critical point: if the arrows point toward it from both sides, it
is stable. If the arrows point away, it is unstable. If the arrows both point left or both point right, it is
semistable.

◦ Step 5 (optional): Draw some solution curves, either by solving the equation or by using the stability
information.

• Example: Find the equilibrium states of y′ = y and determine stability.

◦ Step 1: We have f(y) = y, which obviously is zero only when y = 0.

◦ Step 2: We draw the line and plug in 2 test points to see that the sign diagram looks like 	|
0
⊕.

◦ Step 3: Changing the diagram to arrows gives ← |
0
→.

◦ Step 4: So we can see from the diagram that the only equilibrium point 0 is unstable .

◦ Step 5: We can of course solve the equation to see that the solutions are of the form y(t) = C et, and
indeed, the equilibrium solution y = 0 is unstable:
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• Example: Find the equilibrium states of y′ = y2(y − 1)(y − 2) and determine stability.

◦ Step 1: We have f(y) = y2(y − 1)(y − 2), which conveniently is factored. We see it is zero when y = 0,
y = 1, and y = 2.

◦ Step 2: We draw the line and plug in 4 test points to see that the sign diagram looks like ⊕|
0
⊕ |

1
	 |

2
⊕.

◦ Step 3: Changing the diagram to arrows gives → |
0
→ |

1
← |

2
→.

◦ Step 4: So we can see from the diagram that 0 is semistable , 1 is stable , and 2 is unstable .

◦ Step 5: In this case, it is possible to obtain an implicit solution by integration; however, an explicit
solution does not exist. However, we can graph some solution curves to see, indeed, our classi�cation is
accurate:

9.7 First Order: Some Applications

9.7.1 The Logistic Equation

• Example: Solve the di�erential equation P ′ = kP (M − P ), where k and M are positive constants.
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◦ Step 1: Rewrite as
M dP

P (M − P )
= kM dt.

◦ Step 2: Integrate both sides to obtain
´ M

P (M − P )
dP =

´
kM dt. To evaluate the P -integral, use

partial fraction decomposition:
M

P (M − P )
=

1

P
+

1

M − P
. Evaluating the integrals therefore yields

ln(P )− ln(M − P ) = kMt+ C.

◦ Step 4: Combine the logarithms to obtain ln

(
P

M − P

)
= kMt+C; now exponentiate to get

P

M − P
=

CekMt. Solving for P yields, �nally, P (t) =
M

1 + Ce−kMt
.

◦ Note: If we want to satisfy the initial condition P (0) = P0, then plugging in shows C =
M

P0
− 1. Then

the solution can be rewritten in the form P (t) =
MP0

P0 + (M − P0)e−kMt
.

• Remark: Di�erential equations of this form are called logistic equations. With the explicit solution given
here, or using the properties of stable and unstable equilibria, we can observe some properties of the solution
curves.

◦ We can see that P = 0 and P =M are the only equilibrium solutions.

◦ Since k and M are positive, the sign diagram is 	|
0
⊕ |

M

	. So 0 is an unstable equilibrium and M is a

stable equilibrium.

◦ Thus, as t→∞, as long as the starting population P0 is positive, the population P (t) tends toward the
�carrying capacity� of M . (We can also see this using the explicit solution.)

• Remark: If instead we had k < 0 rather than k > 0, the stability of the two equilibrium solutions would �ip
(0 would be stable and M would be unstable). Then we would be in an �extinction-explosion� scenario: if the
initial population P0 were less than M , it would tend toward 0, and if the population were greater than M ,
it would tend toward ∞.

9.7.2 Mixing Problems

• The setup of the general mixing problem is as follows:

◦ We have some reservoir (pool, lake, ocean, planet, room) of liquid (water, gas) which has some substance
(pollution, solute) dissolved in it.

◦ The reservoir starts at an initial volume V0 and there is an initial amount of substance y0 in the reservoir.

◦ We have some amount of liquid In(t) �owing in with a given concentration k(t) of the substance, and
some other amount of liquid Out(t) �owing out.

◦ We assume that the substance is uniformly and perfectly mixed in the reservoir, and want to know the
amount y(t) of the substance that remains in the reservoir after time t.

• Note that this is the general setup. In more speci�c examples, the amount of liquid �owing in or out may be
constants (i.e., not depending on time), and similarly the concentration of the liquid �owing in could also be
a constant. The solution is the same, of course.

• We can solve the problem as follows:

◦ Let V (t) be the total volume of the reservoir. If y(t) is the total amount of substance in the reservoir,

the concentration of substance in the reservoir is
y(t)

V (t)
. Thus the total amount of substance moving in

is k · In(t) and the total amount of substance moving out is the concentration of substance times the

volume moving out, or
y(t)

V (t)
·Out(t).
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◦ We have V ′(t) = In(t)−Out(t), and y′(t) = k(t) · In(t)− y(t)

V (t)
·Out(t). For clarity, refer to the diagram:

◦ To solve this system, we can integrate to �nd V (t) explicitly.

◦ Then we can rewrite the other equation as y′ +
Out(t)

V (t)
· y = k(t) · In(t), which we can solve because it is

�rst-order linear.

• Example: A mixing tank initially contains 10L of a salt water solution with a salt concentration of 5g/L.
Pure water �ows into the tank at a rate of 3L/s, and the mixed solution �ows out at a rate of 2L/s. Find the
concentration of salt as a function of time.

◦ We have V (0) = 10L and y(0) = 10L · 5g/L = 50g, and k(t) = 0.

◦ We also have In(t) = 3L/s and Out(t) = 2L/s, so V ′(t) = 3L/s− 2L/s = 1L/s.

◦ Integrating gives V (t) = (C + t)L. Since V (0) = 10L, we get V (t) = (10 + t)L.

◦ Furthermore, y′(t) = 0 · 3L/s− y(t)

(10 + t)L
· 2L/s, which is equivalent to y′ = − y

10 + t
· 2.

◦ This is a separable equation. We get
dy

dt
=
−y

10 + t
· 2, so that

dy

y
= − 2

10 + t
dt.

◦ Integrating gives

ˆ
dy

y
=

ˆ
− 2

10 + t
dt, so ln(y) = −2 ln(10 + t) + C.

◦ Since y(0) = 50g, we see that ln(50) = −2 ln(10) + C, so C = ln(50) + 2 ln(10) = ln(5000).

◦ Then ln(y) = −2 ln(10+ t) + ln(5000) = ln
[
5000(10 + t)−2

]
, which is equivalent to y = 5000(10+ t)−2g.

The concentration is equal to
y(t)

V (t)
= 5000(10 + t)−3g/L .

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012-2015. You may not reproduce or distribute this
material without my express permission.
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